Использование режима коллимирования пучка заряженных частиц для расширения функциональных возможностей корпускулярно-оптических систем
DOI:
https://doi.org/10.31489/2022No2/101-106Ключевые слова:
electron spectroscopy, collimation, energy analyzer, corpuscular-optical systemsАннотация
Рассмотрен еще один подход при моделировании корпускулярно-оптических систем для анализа потоков заряженных частиц. Обязательным для всех рассмотренных и использованных ранее методов было выполнение условия пространственной фокусировки пучка частиц. Однако это строгое условие не всегда выполнимо в сочетании с другими требованиями. При использовании в качестве основного элемента цилиндрического электростатического зеркального анализатора пространственная фокусировка пучка несовместима с фокусировкой во времени пролета по энергии. В работе рассмотрена возможность использовать режим коллимирования пучка заряженных частиц, тем самым исключив необходимость выполнения условия фокусировки.
Библиографические ссылки
Woodruff D.P., Delchar T.A. Modern Techniques of Surface Science. Cambridge University Press; 2nd edition: 1994, 608 p.
Siladi M. Electron and ion optics. Moscow. Mir. 1990, 639 p. [in Russian]
Weiland C., Rumaiz A.K., Pianetta P. Recent applications of hard x-ray photoelectron spectroscopy. Journal of Vacuum Science & Technology A, 2016, Vol.34, Is.3, pp. 030801. doi: 10.1116/1.4946046
Chen L.X., Zhang X., Shelby M.L. Recent advances on ultrafast X-ray spectroscopy in the chemical sciences. Chemical science, 2014, Vol.5, Is.11, pp. 4136-4152. doi: 10.1039/c4sc01333f
HON, DNS. Fourier-Transform IR Spectroscopy And Electron-Spectroscopy For Chemical-Analysis - Use In The Study Of Paper Documents. Advances in chemistry series. 1986, Is. 212, pp. 349-361.
Baer D.R., Gaspar D.J., Nachimuthu P., et al. Application of surface chemical analysis tools for characterization of nanoparticles. Analytical and Bioanalytical Chemistry, 2010, Vol. 396, Is. 3, pp. 983-1002. doi: 10.1007/s00216-009-3360-1
Barthes-Labrousse, MGV. Auger electron spectroscopy and X-ray photoelectron spectroscopy - Principle and applications. Vide-Science Technique Et Applications, 2003, Vol.58, Is.308, pp. 353.
Zigban K., Nordling K., Falman A., et al. Electron Spectroscopy. Moscow, Mir, 1971, 493 p. [in Russian]
Penent F, Lablanquie P, Hall RI . Coincidence Auger spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2005, Vol. 144, pp. 7-11. doi: 10.1016/j.elspec.2005.01.187
Ohno, Masahide. Many-body theory of the Auger Auger-electron coincidence spectroscopy (AAECS) spectra of solids. Chemical Physics, 2012, Vol.393, Is.1, pp. 74-79. doi: 10.1016/j.chemphys.2011.11.028
Saulebekov A.О., Vénos D., Kambarova Zh.T., et al. Development of energy analyzer of charged particles based on the basis non-uniform electrostatic field. Eurasian Physical Technical Journal, 2019, Vol.16, No.1 (31), pp. 24-29.
Kambarova Zh.T., Saulebekov A.O. Development of a mirror energy analyzer of charged particles beams based on a modified electrostatic field. «Book Series: 7th International Congress «Energy Fluxes and Radiation Effects» (IEEE Xplore Digital Library)., pр.1028-1030. doi: 10.1109/EFRE47760.2020.9242029
Kambarova Zh.T., Saulebekov A.O. Analyzer of charged particles based on the electrostatic quadrupole-cylindrical field in the «axis-ring» focusing regime. «Book Series: 7th International Congress «Energy Fluxes and Radiation Effects» (IEEE Xplore Digital Library), рp.1031-1033. doi: 10.1109/EFRE47760.2020.9242088
Kambarova Zh.T., Trubitsyn A.A., Saulebekov A.O. Axially symmetric energy analyzer based on the electrostatic decapole-cylindrical field. Technical Physics, 2018, Vol.63, No.11, pp.1667–1671. doi: 10.1134/S1063784218110142
Baranova L.A. Charged particle energy analyzer based on a modified cylindrical mirror in the ring-axis focusing mode. Technical physics, 2014, Vol. 59. Iss. 3, pp. 463-465. doi:10.1134/s1063784214030049
Baranova L.A. Cylindrical mirror energy analyzer with the input of charged particles through end-surface diaphragm. Technical physics, 2016, Vol. 61, Iss. 8, pp. 1272-1274.
Ashimbaeva B.U., Chokin, K.Sh., Saulebekov A.O., Kambarova Zh.T. The combined energy analyzer composed of electrostatic mirror fields. Journal of Electron Spectroscopy and Related Phenomena, 2012, V.185, №11, pp.518-522.
Ashimbaeva B.U., Chokin, K.Sh., Saulebekov A.O., Kambarova Zh.T. Modeling of an electrostatic system from cylindrical and hyperbolic mirrors. Prikladnaya fizika, 2012, № 4, pp . 73-78. [in Russian].
Zashkvara V.V., Yurchak L.S., Bylinkin A.F. Electron-optical properties of electrostatic spherical mirror and systems based on it (I). Zh. Tekh. Phys., 1989, V.58, № 10, pp. 2010-2020. [in Russian].
Zashkvara V.V., Saulebekov A.O., Ashimbaeva B.U. Electron-optical properties of electrostatic spherical mirror and systems based on it. II. The electrostatic spherical mirror in external reflection of charged particles beam. Zh. Tekh. Phys., 1989, V.59, № 7, pp.1-9. [in Russian].
Saulebekov A.O., Assylbekova S.N., Kambarova Zh.T., Orakbai A. Modeling of electrostatic collimator of charged particles beams on the basis of spherical mirror. Eurasian phys. tech. j., 2016, V.13, No 1 (25), pp. 22-26.
Saulebekov A.O., Assylbekova S.N., Tazhibaeva S.D., et al. Collimation of charged particles beam in electrostatic cylindrical, spherical and hyperbolic mirrors. Bulletin of University of Karaganda, 2004, №2 (34), pp.50-55.
Zashkvara V.V., Ilyin А.М., Ashimbaeva B.U. Time-of-flight mass separator based on electrostatic cylindrical mirrors. Zh. Tekh. Phys., 1980, Т.50, №7, pp.1464-1470. [in Russian].
Gurov V.S., Saulebekov A.O., Trubitsyn A.A. Approximate-Analytical and Numerical Methods in the Design of Energy Analyzers/ Advances in imaging and electron physics. Analytical Editor-in-chief Peter W. Hawkes CEMES-CNRS Toulouse, France. - Academic Press is an imprint of Elsevier, 2015. - Volume 192.- 224p.
Ashimbaeva B.U., Chokin K.Sh., et al. Energy analysis and time-flight mass- analysis of spherical and cylindrical mirrors system. Eurasian phys. tech. j., 2007, V.4., No 2(8), pp.45-51.