Оптимизация влияния легирования и температуры на электрофизические характеристики p-n и p-i-n переходных структур.
DOI:
https://doi.org/10.31489/2024No3/21-28Ключевые слова:
плотность объемного заряда, концентрация легирующих примесей, моделирование, калибровка, оптимизацияАннотация
В данной работе исследовано влияние легирования и температуры (при 300 К и 400 К) на характеристики кремниевых (Si) и арсенид-галлиевых (GaAs) p-n и p-i-n гомопереходных структур, используя концентрации легирующих примесей p+=n+=2∙10¹⁷ и p=n=10¹⁶ см⁻³ посредством численного расчета и моделирования. Кроме того, проанализированы три различные случаи: A) p-n, B) p+-n и C) p-n+, чтобы исследовать их влияние на распределение объемного заряда, потенциала, электрического поля, неосновных носителей заряда и вольт-амперной (I-U) характеристики при 300 К. Из полученных результатов видно, что в случае A процесс рекомбинации не наблюдается при низком напряжении в симметричном p-n переходе по сравнению с асимметричными p-n переходами в случаях B и C. Затем были измерены вольт-температурные характеристики подготовленных образцов при температуре 300 К. Калибровка кремниевых p-n гомопереходов была выполнена с использованием экспериментальных данных для проверки предложенной модели. С помощью этой комплексной модели в нашей следующей работе будет исследовано влияние различных геометрических изменений, таких как радиальный p-n переход, на электрофизические свойства.
Библиографические ссылки
Shockley W. (1949) The Theory of p-n Junctions in Semiconductors and p-n Junction Transistors. Bell System Technical Journal, 28(3), 435–489. DOI: 10.1002/j.1538-7305.1949.tb03645.x. DOI: https://doi.org/10.1002/j.1538-7305.1949.tb03645.x
Takeuchi D., Makino T., Kato H., Okushi H., Yamasaki S. (2011) Electron emission from diamond p-i-n junction diode with heavily P-doped n+ top layer. Physica Status Solidi (a), 208(9), 2073–2078. DOI:10.1002/pssa.201100140. DOI: https://doi.org/10.1002/pssa.201100140
Pohl P., Renner F.H., Eckardt M., Schwanhäußer A., Friedrich A., Yüksekdag Ö., Gossard A. C. (2003) Enhanced recombination tunneling in GaAs pn junctions containing low-temperature-grown-GaAs and ErAs layers. Applied Physics Letters, 83(19), 4035-4037. DOI: 10.1063/1.1625108. DOI: https://doi.org/10.1063/1.1625108
Goktas N.I., Wilson P., Ghukasyan A., Wagner D., McNamee S., LaPierre R.R. (2018) Nanowires for energy: A review. Appl. Phys. Rev., 5 (4), 041305. DOI: 10.1063/1.5054842. DOI: https://doi.org/10.1063/1.5054842
Qiang Zeng, Na Meng, Yulong Ma, Han Gu, Jing Zhang, Qingzhu Wei, Yawei Kuang, Xifeng Yang, Yushen Liu (2018) Two-Dimensional Modeling of Silicon Nanowires Radial Core-Shell Solar Cells. Advances in Condensed Matter Physics, 2018, 7203493. DOI: 10.1155/2018/7203493. DOI: https://doi.org/10.1155/2018/7203493
Shin J.C., Chanda D., Chern W., Yu K.J., Rogers J.A., Li X. (2012) Experimental Study of Design Parameters in Silicon Micropillar Array Solar Cells Produced by Soft Lithography and Metal-Assisted Chemical Etching. IEEE Journal of Photovoltaics, 2(2), 129–133. DOI: 10.1109/JPHOTOV.2011.2180894. DOI: https://doi.org/10.1109/JPHOTOV.2011.2180894
Pylypova O.V., Evtukh A.A., Parfenyuk P.V., Ivanov I.I., Korobchuk I.M., Havryliuk O.O., Semchuk O.Y. (2019) Electrical and optical properties of nanowires-based solar cell with radial p-n junction. Opto-Electronics Review, 27(2), 143–148. DOI: 10.1016/j.opelre.2019.05.003. DOI: https://doi.org/10.1016/j.opelre.2019.05.003
Jung J.-Y., Guo Z., Jee S.-W., Um H.-D., Park K.-T., Hyun M.S., Lee J.-H. (2010) A waferscale Si wire solar cell using radial and bulk p–n junctions. Nanotechnology, 21(44), 445303. DOI:10.1088/0957-4484/21/44/445303. DOI: https://doi.org/10.1088/0957-4484/21/44/445303
Prabhat B.N., Balamurugan K. (2021) Characteristics and Modeling of PN Junction Diode in Verilog-A Including Reverse Recovery. Proceding of the IEEE 6th International Conference on Computing, Communication and Automation (ICCCA), Arad, Romania, 509 – 516. DOI: 10.1109/ICCCA52192.2021.9666261. DOI: https://doi.org/10.1109/ICCCA52192.2021.9666261
Khalid M., Raza W., Riaz S., Naseem S. (2015). Simulation and Analysis of Static and Dynamic Performance of Normally-off TIVJFET Using Sentaurus TCAD. Materials Today: Proceedings, 2(10), 5720–5725. DOI:10.1016/j.matpr.2015.11.117. DOI: https://doi.org/10.1016/j.matpr.2015.11.117
Kurbanov U., Zhumabaeva G., Dzhumanov S. (2024) New metal/superconductor-insulator transitions and their effect on high-TC superconductivity in underdoped and optimally doped cuprates. Eurasian Physical Technical Journal, 21, 1(47), 21–27. DOI: 10.31489/2024No1/21-27. DOI: https://doi.org/10.31489/2024No1/21-27
Arefinia Z., Asgari A. (2015) Optical and electrical modeling of solar cells based on graphene/Si nanowires with radial p–i–n junctions. Solar Energy Materials and Solar Cells, 137, 146 – 153. DOI: 10.1016/j.solmat. 2015.01.032. DOI: https://doi.org/10.1016/j.solmat.2015.01.032
Ferreira, Gabriel M., Vítor Silva, Graça Minas, Susana O. Catarino (2022) Simulation Study of Vertical p–n Junction Photodiodes’ Optical Performance According to CMOS Technology. Applied Sciences, 12, 5: 2580. DOI:10.3390/app12052580. DOI: https://doi.org/10.3390/app12052580
Abdullayev J.S., Sapaev, I. B. (2024) Optimization of The Influence of Temperature on The Electrical Distribution of Structures with Radial p-n Junction Structures. East European Journal of Physics, (3), 344-349. DOI:10.26565/2312-4334-2024-3-39. DOI: https://doi.org/10.26565/2312-4334-2024-3-39
Muhammed O.A., Danladi E., Boduku P.H., Tasiu J., Ahmad M.S., Usman N. (2021) Modeling and simulation of lead-free perovskite solar cell using SCAPS-1D. East European Journal of Physics, 2, 146-154.
Ali N.M., Allam N.K., Abdel Haleem A.M., Rafat N.H. (2014) Analytical modeling of the radial pn junction nanowire solar cells. Journal of Applied Physics, 116(2), 024308. DOI:10.1063/1.4886596. DOI: https://doi.org/10.1063/1.4886596
Bal S.S., Basak A., Singh U.P. (2022) Numerical modeling and performance analysis of Sb-based tandem solar cell structure using SCAPS–1D. Optical Materials, 127, 112282. DOI: https://doi.org/10.1016/j.optmat.2022.112282
Kelzenberg M.D., Boettcher S.W., Petykiewicz J.A., Turner-Evans D.B., Putnam M.C., Warren E.L., Atwater H.A. (2010). Erratum: Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Materials, 9(4), 368–368. DOI:10.1038/nmat2727. DOI: https://doi.org/10.1038/nmat2727
Shura M.W., Wagener V., Botha J.R., Wagener M C. (2012). Photoconduction spectroscopy of p-type GaSb films. Physica B: Condensed Matter., 407(10), 1656 – 1659. DOI: 10.1016/j.physb.2011.09.110. DOI: https://doi.org/10.1016/j.physb.2011.09.110













