FRACTAL NANOPARTICLES OF PHASE-SEPARATING SOLID SOLUTIONS: MORPHOLOGY-DEPENDENT PHASE EQUILIBRIA IN TUNGSTEN HEAVY PSEUDO-ALLOYS

FRACTAL NANOPARTICLES OF PHASE-SEPARATING SOLID SOLUTIONS: MORPHOLOGY-DEPENDENT PHASE EQUILIBRIA IN TUNGSTEN HEAVY PSEUDO-ALLOYS

Authors

DOI:

https://doi.org/10.31489/2023No4/125-132

Keywords:

nanoparticles, phase separation, tungsten, chromium, fractal dimension

Abstract

In this paper, we simulate thermodynamically the morphology-dependent phase equilibria in core-shell nanoparticles of a phase-separating solid solution using the example of W-Cr heavy alloy. The morphology of a nanoparticle is described in the framework of the fractal geometry methods. It is shown that there are two possible heterogeneous states in a nanoparticle while the compositions of phases in both states differ from each other. The dependences of mutual solubilities of components on the temperature are obtained while the behavior of these dependences significantly differs depending on the particular state and the morphology of nanoparticle under consideration. In nanoparticles of a very complicated morphology, the phase separation itself gets suppressed and the nanoparticle remains in the homogeneous state at the temperatures significantly below the macroscopic value of the upper critical dissolution temperature. The demonstrated regularities are explained based on three mechanisms of reducing the free energy of the system and the “competition” between them. In the final section, a method for calculating the equlibrium size distributions and average characteristics of nanoparticle ensembles is described along with a technique of measuring nanoparticle fractal dimensions based on the microscopy data.

References

Vilémová M., Illková K., Lukáš F., et al. Microstructure and phase stability of W-Cr alloy prepared by spark plasma sintering. Fus. eng. des., 2018, Vol. 127, pp. 173 – 178. doi:10.1016/ j.fusengdes.2018.01.012. DOI: https://doi.org/10.1016/j.fusengdes.2018.01.012

Hou Q.-Q., Huang K., Luo L.-M., Tan X.-Y., et al. Microstructure and its high temperature oxidation behavior in W-Cr alloys prepared by spark plasma sintering. Materialia, 2019, Vol. 6, p.100332. doi:10.1016/j.mtla.2019.100332. DOI: https://doi.org/10.1016/j.mtla.2019.100332

Bose A., Schuh C.A., Tobia J.C., et al. Traditional and additive manufacturing of a new tungsten heavy alloy alternative. Int. j. refract. met. hard mater., 2018. Vol. 73, pp. 22 – 28. doi:10.1016/j.ijrmhm.2018.01.019. DOI: https://doi.org/10.1016/j.ijrmhm.2018.01.019

Tilmann W., Fehr A., Heringhaus M. Mechanical milling to foster the solid solution formation and densification in Cr-W-Si for hot-pressing of PVD target materials. Adv. powder technol., 2021, Vol.32, No.6, pp. 1927 – 1934. doi:10.1016/j.apt.2021.04.001. DOI: https://doi.org/10.1016/j.apt.2021.04.001

Olakanmi E.O., Cochrane R.F., Dalgarno K.W. A review of selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Prog. mater. sci., 2015. Vol. 74, pp. 401 – 477. doi:10.1016/j.pmatsci.2015.03.002. DOI: https://doi.org/10.1016/j.pmatsci.2015.03.002

Cordero Z.C., Carpenter R.R., Schuh C.A., et al. Sub-scale ballistic testing of an ultrafine grained tungsten alloy into concrete targets. Int. j. impact eng., 2016, Vol. 91, pp. 1 – 5. doi:10.1016/j.ijimpeng.2015.11.013. DOI: https://doi.org/10.1016/j.ijimpeng.2015.11.013

Chookajorn T., Park M., Schuh C.A. Duplex nanocrystalline alloys: entropic nanostructure stabilization and a case study on W-Cr. J. mater. res., 2015., Vol. 30, No. 2, pp. 151 – 162. doi:10.1557/jmr.2014.385. DOI: https://doi.org/10.1557/jmr.2014.385

Udovskii A.L., Karpushkin V.N., Nikishina E.A. A method for autonomous thermodynamic assessment of phase diagrams of binary systems containing p disordered phases of variable composition and q phases of constant composition at (p, q) ≤ 10. Metally, 1991. No. 4, pp. 87 – 103 [in Russian].

Shishulin A.V., Shishulina A.V. Equilibrium phase composition and mutual solubilities in fractal nanoparticles of the W-Cr heavy pseudo-alloys. Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials, 2019, No. 11. pp. 380 – 388. doi:10.26456/pcascnn/2019.11.380. DOI: https://doi.org/10.26456/pcascnn/2019.11.380

Bajaj S., Haverty M.G., Arróyave R., Goddard W.A., Shankar S. Phase stability in nanoscale material systems: extensions from bulk phase diagrams. Nanoscale, 2015, Vol. 7, No. 9868. doi:10.1039/C5NR01535A. DOI: https://doi.org/10.1039/C5NR01535A

Shirinyan A., Wilde G., Bilogorodskyy Y. Melting loops in the phase diagram of individual nanoscale alloy particles: completely miscible Cu-Ni alloys as a model system. J. mater. sci., 2020. Vol. 55, pp. 12385 – 12402. doi:10.1007/s10853-020-04812-2. DOI: https://doi.org/10.1007/s10853-020-04812-2

Mendoza-Pérez R., Muhl S. Phase diagrams of refractory bimetallic nanoalloys. J. nanopart. res., 2020, Vol. 22, No. 36. doi:10.1007/s11051-020-05035-x. DOI: https://doi.org/10.1007/s11051-020-05035-x

Geoffrion L.-D., Guisbiers G. Chemical ordering in Bi1-x –Sbx nanostructures: Alloy, janus or core-shell? J. phys. chem., C. 2020, Vol.124, No.25, pp. 14061 – 14068. doi:10.1021/acs.jpcc.0c04356. DOI: https://doi.org/10.1021/acs.jpcc.0c04356

Geoffrion L.D., Guisbiers G. Physico-chemical properties of selenium–tellurium alloys across the scales. Nanoscale Adv., 2021. Vol.3, No.14, pp. 4254 – 4270. doi:10.1039/D1NA00087J. DOI: https://doi.org/10.1039/D1NA00087J

Shishulin A.V., Fedoseev V.B. Effect of initial composition on the liquid–solid phase transition in Cr-W alloy nanoparticles. Inorg. mater., 2019. Vol.55, No.1, pp. 14 – 18. doi:10.1134/S0002337X19010135. DOI: https://doi.org/10.1134/S0020168519010138

Ghasemi M., Zanolli Z., Stankovski M., Johansson J. Size- and shape-dependent phase diagram of In-Sb nanoalloys. Nanoscale, 2015, Vol. 7, pp. 17387 – 17396. doi:10.1007/s10891-020-02182-9. DOI: https://doi.org/10.1039/C5NR04014K

Shishulin A.V., Potapov A.A., Shishulina A.V. The initial composition as an additional parameter determining the melting behavior of nanoparticles (a case study on Six-Ge1-x alloys). Eurasian phys. tech. j., 2021, Vol. 18, No.4, pp. 5 – 13. doi:10.31489/2021NO4/5-14. DOI: https://doi.org/10.31489/2021No4/5-13

Guisbiers G., Khanal S., Ruiz-Zapeda F., Roque de la Puente J., Yakaman M.-J. Cu-Ni nanoalloy: mixed, core-shell or janus nanoparticles? Nanoscale, 2014, Vol. 6, pp. 14630-14635. doi:10.1039/C4NR05739B. DOI: https://doi.org/10.1039/C4NR05739B

Shishulin A.V., Shishulina A.V. One more parameter determining the stratification of solutions in small-volume droplets. J. eng. phys. Thermophys, 2022, Vol. 95, No. 6, pp. 1374 – 1382. doi:10.1007/s10891-022-02606-8. DOI: https://doi.org/10.1007/s10891-022-02606-8

Shishulin A.V., Fedoseev V.B., Shishulina A.V. Environment-dependent phase equilibria in a small-volume system in the case of the decomposition of Bi-Sb solid solutions. Butlerov commun., 2017. Vol. 51, No. 7, pp. 31 – 37 [in Russian].

Guisbiers G. Advances in thermodynamic modeling of nanoparticles. Adv. phys. X., 2019, Vol. 4, No.1, 1668299. doi:10.1080/23746149.2019.1668299 DOI: https://doi.org/10.1080/23746149.2019.1668299

Magomedov M.N. On the statistical thermodynamics of a free-standing nanocrystal: silicon. Cryst. rep., 2017, Vol. 63, No. 3, 480 – 496. doi:10.1134/S1063774517030142. DOI: https://doi.org/10.1134/S1063774517030142

Samsonov V.M., Demenkov D.E., Karcharov V.I., Bembel A.G. Fluctuation approach to the problem of thermodynamics applicability to nanoparticles. Bull. Russ. acad. sci.: phys., 2011. Vol. 75, No. 8, pp. 1073 – 1077. doi:10.3103/S106287381108034X. DOI: https://doi.org/10.3103/S106287381108034X

Straumal B.B., Mazilkin A.A., Straumal P.B., Gusak A.M., Baretzky B. Shift of lines in phase diagrams for nanograined materials. Adv. struct. mater., 2013. Vol. 4, pp. 265 – 285. doi:10.1007/8611_2010_29. DOI: https://doi.org/10.1007/8611_2010_29

Radnóczi G., Bokányi E., Erdélyi Z., MisjákF. Size-dependent spinodal decomposition in Cu–Ag nanoparticles. Acta mater., 2017.Vol. 123., pp. 82– 89. doi:10.1016/j.actamat.2016.10.036 DOI: https://doi.org/10.1016/j.actamat.2016.10.036

Fedoseev V.B., Shishulin A.V. On the size distribution of dispersed fractal particles. Tech. phys., 2021. Vol. 66, No. 1, pp. 34 – 40. doi:10.1134/S1063784221010072 DOI: https://doi.org/10.1134/S1063784221010072

Shishulin A.V., Potapov A.A., Shishulina A.V. On the transition between ferromagnetic and paramagnetic states in mesoporous materials with fractal morphology. Eurasian phys. tech. j., 2021, Vol. 18, No.2, pp. 6 – 11. doi:10.31489/2021NO2/6-11. DOI: https://doi.org/10.31489/2021No2/6-11

Shishulin A.V., Potapov A.A., Shishulina A.V. Several notes on the lattice thermal conductivity of fractal-shaped nanoparticles. Eurasian phys. tech. j., 2022, Vol. 19, No.3, pp. 10 – 17. doi:10.31489/2022NO3/10-17. DOI: https://doi.org/10.31489/2022No3/10-17

Li J., Du Q., Sun C. An improved box-counting method for image fractal dimension estimation. Pattern recognit, 2009. Vol. 42, pp. 2460 – 2469. doi:10.1016/j.patcog.2009.03.001. DOI: https://doi.org/10.1016/j.patcog.2009.03.001

Fedoseeva E.N., Fedoseev V.B. Interaction of chitosan with benzoic acid in solution and films. Polymer sci. Ser. A., 2011. Vol. 53, No. 11, pp. 1040 – 1046. doi:10.1134/S0965545X1110004X. DOI: https://doi.org/10.1134/S0965545X1110004X

Downloads

Published online

2024-01-04

How to Cite

Shishulin, A., Potapov, A., & Shishulina, A. (2024). FRACTAL NANOPARTICLES OF PHASE-SEPARATING SOLID SOLUTIONS: MORPHOLOGY-DEPENDENT PHASE EQUILIBRIA IN TUNGSTEN HEAVY PSEUDO-ALLOYS. Eurasian Physical Technical Journal, 20(4(46), 125–132. https://doi.org/10.31489/2023No4/125-132

Issue

Section

Physics and Astronomy

Similar Articles

<< < 1 2 3 4 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

Loading...