STUDY OF THE INFLUENCE OF VARIOUS METHODS OF FUEL INPUT THROUGH BURNERS ON COMBUSTION PROCESSES

STUDY OF THE INFLUENCE OF VARIOUS METHODS OF FUEL INPUT THROUGH BURNERS ON COMBUSTION PROCESSES

Authors

DOI:

https://doi.org/10.31489/2025N4/63-73

Keywords:

combustion, simulation, coal-fired power plant, linear-flow and swirling-flow burners, thermal field, carbon monoxide emission, toxic nitrogen compounds.

Abstract

This paper presents new results of computational experiments to study the influence of various methods of fuel input (straight flow and vortex with a flow deflection angle of the pulverized coal stream) across the firing systems on combustion processes utilizing the BKZ-75 boiler combustion chamber case of the Shakhtinskaya TPP (Kazakhstan), fluidized combusting Karaganda coal with high ash content. According to the results of computational combustion modeling, the following results were derived: the total velocity vector distributions, spatial distributions of temperature, and concentrations of carbon oxides and nitrogen dioxide (NO₂) within the full volume through the combustion zone and at the chamber’s discharge. It has been appeared that the vortex strategy of providing the discuss blend makes it conceivable to enhance the method in the combustion of high-ash coal, as in this case there's an increment in temperature within the center of the burn and a lower temperature observed at the combustion zone outlet, which features a noteworthy effect on the chemical forms of the arrangement of reaction products formed during combustion. When employing vortex burner devices, the concentration levels at the combustion outlet zone for carbon monoxide (CO) decrease by about 15 %, and for nitrogen dioxide (NO2) by roughly 20 % relative to direct‑flow burner devices. The comes about gotten make it conceivable to create proposals for the advancement of ideal strategies for managing flame structure and combustion dynamics of a pulverized coal burn to extend the productivity of vitality offices and decrease emanations of hurtful substances into the environment.

References

Pan J., Liu G., Chen L., Xu Q. (2025) Coal dust exposure hazards and prevention technology: A review, Process. Saf. Environ. Prot., 202(B), 107756. https://doi.org/10.1016/j.psep.2025.107756 DOI: https://doi.org/10.1016/j.psep.2025.107756

Zhakiyev N., Burkhanova D., Nurkanat A., Zhussipkaliyeva Sh., Sospanova A., Khamzina A. (2025) Green energy in grey areas: The financial and policy challenges of Kazakhstan's energy transition, Energy Res. Soc. Sci., 124, 104046. https://doi.org/10.1016/j.erss.2025.104046 DOI: https://doi.org/10.1016/j.erss.2025.104046

Tang R., Cheng S. (2023). Combustion chemistry of unsaturated hydrocarbons mixed with NOx: a review with a focus on their interactions, Energies, 16(13), 4967. https://doi.org/10.3390/en16134967 DOI: https://doi.org/10.3390/en16134967

Bartela L., Gladysz P., Ochmann J., Qvist S., Sancho L.O. (2022). Repowering a coal power unit with small modular reactors and thermal energy storage, Energies. 15(16), 5830. https://doi.org/10.3390/en15165830 DOI: https://doi.org/10.3390/en15165830

Messerle V.E., Askarova A.S., Bolegenova S.A., Maximov V.Yu., Nugymanova A.O. (2019) 3D-modelling of Kazakhstan low-grade coal burning in power boilers of thermal power plant with application of plasma gasification and stabilization technologies, J. Phys. Conf. Ser., 1261(1), 012022. https://doi.org/10.1088/1742-6596/1261/1/012022 DOI: https://doi.org/10.1088/1742-6596/1261/1/012022

Abbas Q., Yaqoob H., Uzair S., Ali H.M., Jamil M.M. (2025) Utilization of local coal in Pakistan's oil-fired power plants and future clean technologies for power generation, Case Stud. Chem. Environ. Eng., 11, 101132. https://doi.org/10.1016/j.cscee.2025.101132 DOI: https://doi.org/10.1016/j.cscee.2025.101132

Askarova A., Bolegenova S., Mazhrenova N., Manatbayev R., Ospanova Sh., Berezovskaya I., Maximov V., Nugymanova A., Shortanbayeva Z. (2016) 3D modelling of heat and mass transfer processes during the combustion of liquid fuel, Bulg. Chem. Commun., 48(E2), 229 – 235. Available at: http://www.bcc.bas.bg/BCC_Volumes/Volume_48 _Special_E_2016/Special%20Issue%20E/Statii/Pages229-235.pdf

Gao M., Hong F., Yan G., Liu J., Chen F. (2019) Mechanism modelling on the coordinated control system of a coal-fired subcritical circulating fluidized bed unit, Appl. Therm. Eng., 146, 548-555. https://doi.org/10.1016/j.applthermaleng.2018.09.119 DOI: https://doi.org/10.1016/j.applthermaleng.2018.09.119

Hongxin W., Chenyi S., Haidn O., Askarova A., Manfletti Ch., Slavinskaya N. (2023) A joint hydrogen and syngas chemical kinetic model optimized by particle swarm optimization, Fuel, 332, 125945. https://doi.org/10.1016/j.fuel.2022.125945 DOI: https://doi.org/10.1016/j.fuel.2022.125945

Messerle V., Karpenko E.I., Lavrichshev O.A., Ustimenko A. (2013) Plasma preparation of coal to combustion in power boilers, Fuel Process. Technol., 107, 93-98. https://doi.org/10.1016/j.fuproc.2012.07.001 DOI: https://doi.org/10.1016/j.fuproc.2012.07.001

Askarova A., Georgiev A., Bolegenova S., Beketayeva M., Maximov V., Bolegenova S. (2022) Computational modeling of pollutants in furnaces of pulverized coal boilers of the Republic of Kazakhstan, Energy, 258, 124826. https://doi.org/10.1016/j.energy.2022.124826 DOI: https://doi.org/10.1016/j.energy.2022.124826

Liu Ya., Lin B., Liu T., Hao Zh. (2025) Conjugate heat transfer characteristics of crushed coal rock mass under axial compression: Coupling numerical analysis based on CT reconstruction and FEM, Int. J. Heat Mass Transf., 242, 126788. https://doi.org/10.1016/j.ijheatmasstransfer.2025.126788 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2025.126788

Ustimenko A.B., Messerle V. (2018) Plasma Gasification Energy Conversion Systems, Comp. Energy Syst., 4, 1026-1064. https://doi.org/10.1016/B978-0-12-809597-3.00444-2 DOI: https://doi.org/10.1016/B978-0-12-809597-3.00444-2

Liu J., Yu P., Li Y., Wan Ch., Du D. (2022) Numerical simulation on convective heat transfer characteristics in porous media based on the digital rock technology. Int. J. Heat Mass Transf., 196, 123323. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123323 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2022.123323

Feng X.-B., Liu Q., He Ya-L. (2020) Numerical simulations of convection heat transfer in porous media using a cascaded lattice Boltzmann method, Int. J. Heat Mass Transf., 151, 119410. https://doi.org/ 10.1016/j.ijheatmasstransfer.2020.119410 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119410

Liu Q., Zhong W., Yu A. (2025) Study on the gas-solid flow and reaction characteristics of oxy-fuel co-firing of coal and biomass in a pressurized fluidized bed by 3D Eulerian-Lagrangian modelling, Powder Technol., 456, 120808. https://doi.org/10.1016/j.powtec.2025.120808 DOI: https://doi.org/10.1016/j.powtec.2025.120808

Liu X., Tan H., Wang Y., Yang F., Mikulčić H., Vujanović M., Duić N. (2018) Low NOx combustion and SCR flow field optimization in a low volatile coal fired boiler, J. Environ. Manag., 220, 30 - 35. https://doi.org/10.1016/j.jenvman.2018.05.009 DOI: https://doi.org/10.1016/j.jenvman.2018.05.009

Choi M., Park Ye., Li X., Kim K., Sung Y., Hwang T., Cho G. (2021) Numerical evaluation of pulverized coal swirling flames and NOx emissions in a coal-fired boiler: Effects of co- and counter-swirling flames and coal injection modes, Energy, Vol. 217, 119439. https://doi.org/10.1016/j.energy.2020.119439 DOI: https://doi.org/10.1016/j.energy.2020.119439

Xia Z., Chen C., Bi J., Li K., Jin Ya. (2016) Modeling and simulation of catalytic coal gasification in a pressurized jetting fluidized bed with embedded high-speed air jets, Chem. Eng. Sci., 152, 624–635. https://doi.org/10.1016/j.ces.2016.06.052 DOI: https://doi.org/10.1016/j.ces.2016.06.052

Klimanek A., Bigda J. (2018) CFD modelling of CO2 enhanced gasification of coal in a pressurized circulating fluidized bed reactor, Energy, 160, 710 – 719. https://doi.org/10.1016/j.energy.2018.07.046 DOI: https://doi.org/10.1016/j.energy.2018.07.046

Zhong W., Yu A., Zhou G., Xie J., Zhang H. (2016) CFD simulation of dense particulate reaction system: approaches, recent advances and applications, Chem. Eng. Sci., 140, 16-43. https://doi.org/10.1016/j.ces.2015.09.035 DOI: https://doi.org/10.1016/j.ces.2015.09.035

Messerle V., Ustimenko A. (2020) Modeling of Coal Ignition in Plasma-Fuel Systems with an Electric Arc Torch, IEEE Trans. Plasma Sci., 48(2), 344 – 349. https://doi.org/10.1109/TPS.2019.2956847 DOI: https://doi.org/10.1109/TPS.2019.2956847

Askarova A.S., Bolegenova S.A., Maximov V.Yu., Beketayeva M.T. (2018) Modeling of Heat Mass Transfer in High-Temperature Reacting Flows with Combustion, High Temp., 56(5), 738–743. https://doi.org/10.1134/ S0018151X1805005X DOI: https://doi.org/10.1134/S0018151X1805005X

Wu X., Hu F., Ding C., Yang Y., Yang Ch., Liao H., Lu K., Li B., Liu T., Liu Ch., Li P., Liu Zh. (2024) Progress in numerical simulations and fundamental characteristics of pulverized coal co-firing with ammonia, Int. J. Hydrog. Energy, 82, 740 – 758. https://doi.org/10.1016/j.ijhydene.2024.07.456 DOI: https://doi.org/10.1016/j.ijhydene.2024.07.456

Askarova A.S., Bolegenova S.A., Georgiev A., Bolegenova S.A., Maximov V.Yu., Manatbayev R.К., Yergaliyeva A.B., Nugymanova A.O., Baizhuma Zh.Т. (2018) The use of a new “clean” technology for burning low-grade coal in on boilers of Kazakhstan TPPs, Bulg. Chem. Commun., 50, 53 – 60. Available at: http://bcc.bas.bg/BCC_ Volumes/Volume_50_Special_G_2018/BCC_50G_PD_2018.Or.pdf#page=51

Downloads

Published online

2025-12-29

How to Cite

Askarova, A., Bolegenova, S., Nugymanova, A., Maximov, V., Bolegenova, S., Ospanova, S., … Nurmukhanova, A. (2025). STUDY OF THE INFLUENCE OF VARIOUS METHODS OF FUEL INPUT THROUGH BURNERS ON COMBUSTION PROCESSES. Eurasian Physical Technical Journal, 22(4 (54), 63–73. https://doi.org/10.31489/2025N4/63-73

Issue

Section

Energy

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

Loading...