THEORETICAL STUDY OF ELECTRONIC AND STRUCTURAL PROPERTIES OF N-(2-OXO-2H-CHROMEN-3-CARBONYL) CYTISINE
DOI:
https://doi.org/10.31489/2025N4/39-45Keywords:
cytisine, coumarin, complex, density functional theory, Ultraviolet–visible spectroscopy, luminescence spectroscopy.Abstract
New compounds based on cytisine and coumarin are of interest to the pharmaceutical industry due to their promising biological activity. This activity, in turn, is closely related to the structure of the compound, which is manifested in its specific electronic properties. This paper presents the results of a theoretical study of the electronic and structural properties of recently synthesized N-(2-oxo-2H-chromen-3-carbonyl) cytisine. The molecular structure of the ground and first excited states is established. Their structural features are considered, taking into account their conformational diversity. The probabilities of vertical electronic transitions, which determine the intensities of bands in the emission spectrum, are calculated. The obtained theoretical results are compared with the measured luminescence spectrum of ethanol solution.
References
Tian G., Zhang Z., Li H., Li D., Wang X., Qin C. (2020) Design, Synthesis and Application in Analytical Chemistry of Photo-Sensitive Probes Based on Coumarin. Critical Reviews in Analytical Chemistry, 51, 565–581. https://doi.org/10.1080/10408347.2020.1753163
Wang L., Li W., Zhi W., Ye D., Wang Y., Ni L., Bao X. (2017) A Rapid-Responsive Fluorescent Probe Based on Coumarin for Selective Sensing of Sulfite in Aqueous Solution and Its Bioimaging by Turn-on Fluorescence Signal. Dyes and Pigments, 147, 357–363. https://doi.org/10.1016/j.dyepig.2017.07.021 DOI: https://doi.org/10.1016/j.dyepig.2017.07.021
Li J., Zhang C.-F., Yang S.-H., Yang W.-C., Yang G.-F. (2014) A Coumarin-Based Fluorescent Probe for Selective and Sensitive Detection of Thiophenols and Its Application. Analytical Chemistry, 86, 3037–3042. https://doi.org/10.1021/ac403885n DOI: https://doi.org/10.1021/ac403885n
Ray D., Bharadwaj P.K. (2008) A Coumarin-Derived Fluorescence Probe Selective for Magnesium. Inorganic Chemistry, 47, 2252–2254. https://doi.org/10.1021/ic702388z DOI: https://doi.org/10.1021/ic702388z
Kenchappa R., Bodke Y.D., Chandrashekar A., Aruna Sindhe M., Peethambar S.K. (2017) Synthesis of Coumarin Derivatives Containing Pyrazole and Indenone Rings as Potent Antioxidant and Antihyperglycemic Agents. Arabian Journal of Chemistry, 10, S3895–S3906. https://doi.org/10.1016/j.arabjc.2014.05.029 DOI: https://doi.org/10.1016/j.arabjc.2014.05.029
Annunziata F., Pinna C., Dallavalle S., Tamborini L., Pinto A. (2020) An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities. International Journal of Molecular Sciences, 21, 4618. https://doi.org/10.3390/ijms21134618 DOI: https://doi.org/10.3390/ijms21134618
Alam M., Alam M.J., Azaz S., Parveen M., Park S., Ahmad S. (2018) DFT/TD-DFT Calculations, Spectroscopic Characterizations (FTIR, NMR, UV–Vis), Molecular Docking and Enzyme Inhibition Study of 7-Benzoyloxycoumarin. Computational Biology and Chemistry, 73, 65–78. https://doi.org/10.1016/j.compbiolchem.2018.01.007 DOI: https://doi.org/10.1016/j.compbiolchem.2018.01.007
Srikrishna D., Godugu C., Dubey P.K. (2018) A Review on Pharmacological Properties of Coumarins. Mini-Reviews in Medicinal Chemistry, 18, 113–141. https://doi.org/10.2174/1389557516666160801094919 DOI: https://doi.org/10.2174/1389557516666160801094919
Przybył A.K., Maj E., Wietrzyk J., Kubicki M. (2019) Spectroscopic, Structural and Anticancer Activity Studies of (−)-Cytisine Halogenated N-Benzyl Derivatives. Journal of Molecular Structure, 1176, 871–880. https://doi.org/10.1016/j.molstruc.2018.09.029 DOI: https://doi.org/10.1016/j.molstruc.2018.09.029
Pankin D. (2021) Laser-Induced Twisting of Phosphorus Functionalized Thiazolotriazole as a Way of Cholinesterase Activity Change. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 246, 118979. https://doi.org/10.1016/j.saa.2020.118979 DOI: https://doi.org/10.1016/j.saa.2020.118979
Kopbalina K.B., Makhmutova A.S., Turdybekov D.M., Turdybekov K.M., Tolenova G.K. (2025) Quantum-Chemical Study of the Structure and Properties of Molecule of the Lupinine Alkaloid Derivative. Bulletin of the Karaganda University. Physics Series, 105(1), 14–22. https://doi.org/10.31489/2023No4/33-38 DOI: https://doi.org/10.31489/2025ph1/6-12
He L., Xu Q., Liu Y., Wei H., Tang Y., Lin W. (2015) Coumarin-Based Turn-On Fluorescence Probe for Specific Detection of Glutathione over Cysteine and Homocysteine. ACS Applied Materials & Interfaces, 7, 12809–12813. https://doi.org/10.1021/acsami.5b01934 DOI: https://doi.org/10.1021/acsami.5b01934
Kishkentayeva A., Kopbalina K., Shaimerdenova Z., Shults E., Gatilov Y., Pankin D., Smirnov M., Povolotckaia A., Turdybekov D., Mazhenov N. (2025) Investigation of N-(2-oxo-2H-chromen-3-carbonyl)cytisine’s Crystal Structure and Optical Properties. Materials, 18, 3153. https://doi.org/10.3390/ma18133153 DOI: https://doi.org/10.3390/ma18133153
Kopbalina K., Adekenova A., Shaimerdenova Zh., Kairatova Zh., Shakarimova K., Pankin D., Smirnov M., Kishkentayeva A., Artykbayeva M., Jalmakhanbetova R. (2025) Investigation of N-(2-oxo-2H-chromen-3-carbonyl)cytisine’s Molecular Structure in Solution. Molecules, 30(20), 4139. https://doi.org/10.3390/molecules30204139 DOI: https://doi.org/10.3390/molecules30204139
Gawad S.A.A., Sakr M.A.S. (2022) Spectroscopic Investigation, DFT and TD-DFT Calculations of 7-(Diethylamino) Coumarin (C466) J. Mol. Struct. 1248, 131413. https://doi.org/10.1016/j.molstruc.2021.131413 DOI: https://doi.org/10.1016/j.molstruc.2021.131413
Tian G., Zhang Z., Li H., Li D., Wang X., Qin C. (2020) Design, Synthesis and Application in Analytical Chemistry of Photo-Sensitive Probes Based on Coumarin. Crit. Rev. Anal. Chem. 51, 565–581. https://doi.org/10.1080/10408347.2020.1753163 DOI: https://doi.org/10.1080/10408347.2020.1753163
Chai J., Head-Gordon M. (2008) Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. Physical Chemistry Chemical Physics, 10, 6615–6620. https://doi.org/10.1039/b810189b DOI: https://doi.org/10.1039/b810189b
Ditchfield R., Hehre W.J., Pople J.A. (1971) Self-Consistent Molecular Orbital Methods. 9. Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. Journal of Chemical Physics, 54, 724. https://doi.org/10.1063/1.1674902 DOI: https://doi.org/10.1063/1.1674902
Hehre W.J., Ditchfield R., Pople J.A. (1972) Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular-Orbital Studies of Organic Molecules. Journal of Chemical Physics, 56, 2257. https://doi.org//10.1063/1.1677527 DOI: https://doi.org/10.1063/1.1677527
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. (2013) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT. Available at: https://www.scirp.org/reference/referencespapers?referenceid=2418053
Tomasi J., Mennucci B., Cammi R. (2005) Quantum Mechanical Continuum Solvation Models. Chemical Reviews, 105, 2999–3093. https://doi.org/10.1021/cr9904009 DOI: https://doi.org/10.1021/cr9904009
Kopbalina K.B., Makhmutova A.S., Turdybekov D.M., Turdybekov K.M., Tolenova G.K. (2024) Quantum-Chemical Study of the Structure and Properties of Molecule of the Lupinine Alkaloid Derivative. Eurasian Physical Technical Journal, 4(46), 33-38. https://doi.org/10.31489/2023No4/33-38 DOI: https://doi.org/10.31489/2023No4/33-38
Ibrayev N.Kh., Valiev R.R., Seliverstova E.V., Menshova E.P., Nasibullin R.T., Sundholm D. (2024) Molecular phosphorescence enhancement by the plasmon field of metal nanoparticles. Physical Chemistry Chemical Physics, 26, 14624-1436. https://doi.org/10.1039/d4cp01281j DOI: https://doi.org/10.1039/D4CP01281J
Sun X.Y., Liu T., Sun J., Wang X.J. (2020). Synthesis and application of coumarin fluorescence probes. RSC advances, 10(18), 10826-10847. https://doi.org/10.1039/C9RA10290F DOI: https://doi.org/10.1039/C9RA10290F
Xu Y., Jiang Z., Xiao Y., Bi F.Z., Miao J.Y., Zhao B.X. (2014). A new fluorescent pH probe for extremely acidic conditions. Analytica chimica acta, 820, 146-151. https://doi.org/10.1016/j.aca.2014.02.029 DOI: https://doi.org/10.1016/j.aca.2014.02.029
Chen Y., Clouthier C.M., Tsao K., Strmiskova M., Lachance H., Keillor J.W. (2014). Coumarin-Based Fluorogenic Probes for No-Wash Protein Labeling, Angew. Chem. Int. Ed., 53, 13785–13788. https://doi.org/10.1002/anie.201408015 DOI: https://doi.org/10.1002/anie.201408015
You Q.H., Lee A.W.M., Chan W.H., Zhu X.M., Leung K.C.F. (2014). A coumarin-based fluorescent probe for recognition of Cu 2+ and fast detection of histidine in hard-to-transfect cells by a sensing ensemble approach. Chemical Communications, 50(47), 6207-6210. https://doi.org/10.1039/C4CC00521J DOI: https://doi.org/10.1039/C4CC00521J
Downloads
Published online
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.












