Малогабаритный высокочувствительный электронный спектрометр для анализа состава корпускулярных потоков

Малогабаритный высокочувствительный электронный спектрометр для анализа состава корпускулярных потоков

Авторы

DOI:

https://doi.org/10.31489/2023No2/112-117

Ключевые слова:

электронный спектрометр, энергоанализ, энергоанализатор, электростатическое зеркало, корпускулярно-оптическая система

Аннотация

Работа посвящена теоретической разработке малогабаритного высокочувствительного  электронного спектрометра для анализа состава корпускулярных потоков  в широком диапазоне измеряемых энергий частиц. Зеркальный энергоанализатор частиц в спектрометре построен на основе электростатического октупольно-цилиндрического поля и обладает большим фокусным расстоянием. Рассчитаны фокусирующие свойства схемы, оценены светосила и разрешающая способность прибора. В составе комплекса оборудования  для космических аппаратов предложенный  прибор позволить определять состав заряженных частиц в нестационарных потоках в межпланетном пространстве. Также при конструировании прибора есть возможность комбинирования нескольких методов анализа (например, с масс-спектрометрическими методами), которые будут успешно дополнять друг друга, что будет обеспечивать высокую информативность совместного анализа. Данная тенденция наблюдается при создании космических исследовательских комплексов, в составе которых, как правило, входят несколько независимых методов анализа.

Библиографические ссылки

De Mol N.J., Fischer M.J.E. (editors), Surface plasmon resonance. Methods and protocols. New York, Springer Science, 2010, 286 p.

Homola J. Surface plasmon resonance based sensors. Springer series on chemical sensors and biosensors, Series 4, Berlin, Springer Science, 2006, 252 p. DOI: https://doi.org/10.1007/b100321

Geddes C.D., Lakowicz J.R. Metal enhanced fluorescence. J. Fluoresc, 2002, Vol. 12, pp. 121–129, doi:10.1023/A:1016875709579 DOI: https://doi.org/10.1023/A:1016875709579

Ranjan R., Esimbekova E.N., Kirillova M.A., Kratasyuk V.A. Metal–enhanced luminescence: Current trend and future perspectives – A review. Anal. Chimica Acta, 2017, Vol. 971, pp. 1–13. doi:10.1016/j.aca.2017.03.051 DOI: https://doi.org/10.1016/j.aca.2017.03.051

Seliverstova E.V., Ibrayev N.K., Zhumabekov A.Z. The Effect of silver nanoparticles on the photodetecting properties of the TiO2/graphene oxide nanocomposite. Opt. Spectrosc, 2020, 128, pp.1449–1457, doi:10.1134/S0030400X20090192 DOI: https://doi.org/10.1134/S0030400X20090192

Balykin V.I. Plasmon nanolaser: current state and prospects. Phys. Usp, 2018, Vol. 61, pp. 846–870. doi:10.3367/UFNr.2017.09.038206 DOI: https://doi.org/10.3367/UFNe.2017.09.038206

Wang D., Wang W., Knudson M.P., Schatz G.C., Odom T.W. Structural engineering in plasmon nanolasers. Chem Rev, Vol. 118, 2018, pp. 2865–2881. doi:10.1021/acs.chemrev.7b00424. DOI: https://doi.org/10.1021/acs.chemrev.7b00424

Xu Y., Tan Y., Ma X., Jin X., Tian Y., Li M. Photodynamic therapy with tumor cell discrimination through RNA-targeting ability of photosensitizer. Mol, 2021, Vol. 26, No. 19, pp. 5990. doi:10.3390/molecules26195990 DOI: https://doi.org/10.3390/molecules26195990

Chen Y., Yu Z., Meng X., et al. Localized surface plasmon resonance improves transdermal photodynamic therapy of hypertrophic scars. Nano Res, Vol.15, 2022, pp. 4258–4265, DOI:10.1007/s12274-021-4067-7 DOI: https://doi.org/10.1007/s12274-021-4067-7

Ibrayev N., Afanasyev D., Ishchenko A., Kanapina A. Influence of silver nanoparticles on the spectral-luminescent and lasing properties of merocyanine dyes solutions. Laser Phys. Lett, 2021, Vol. 18, No. 8, pp. 085001. doi:10.1088/1612-202X/ac0e3f DOI: https://doi.org/10.1088/1612-202X/ac0e3f

Morfa A., Rowlen K., Reilly T., et al. Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl. Phys. Lett, 2008, Vol. 92, No.1 pp. 013504-013504-3. doi:10.1063/1.2823578 DOI: https://doi.org/10.1063/1.2823578

Puspitasari R., Budiarti H., Hatta A., Koentjoro S., Risanti D. Enhanced dye-sensitized solar cells performance through novel core-shell structure of gold nanoparticles and nano-silica extracted from lapindo mud vulcano. Procedia Eng, 2017, Vol.170, pp. 93-100. doi:10.1016/j.proeng.2017.03.018 DOI: https://doi.org/10.1016/j.proeng.2017.03.018

Ibrayev N., Seliverstova E., Omarova G., Ishchenko A. Sensitization of TiO2 by merocyanine dye in the presence of plasmon nanoparticles. Mater Today: Proc, 2021, Vol. 49, pp. 2464–2468. doi:10.1016/j.matpr.2020.11.424 DOI: https://doi.org/10.1016/j.matpr.2020.11.424

Chen Y.S., Chao B.K., Nagao T., Hsueh C.H. Effects of Ag particle geometry on photocatalytic performance of Ag/TiO2/reduced graphene oxide ternary systems. Mater. Chem Phys, 2020, Vol. 240, pp. 122216. doi:10.1016/j.matchemphys.2019.122216 DOI: https://doi.org/10.1016/j.matchemphys.2019.122216

Vasilaki E., Georgaki I., Vernardou D., Vamvakaki M., et al. Ag-loaded TiO2/reduced graphene oxide nanocomposites for enhanced visible-light photocatalytic activity. Appl. Surf. Sci, 2015, Vol. 353, pp. 865-872. doi:10.1016/j.apsusc.2015.07.056 DOI: https://doi.org/10.1016/j.apsusc.2015.07.056

Ibrayev N.Kh., Zhumabekov A.Zh., Seliverstova E.V. Photoelectric properties of TiO2-GO+Ag ternary nanocomposite material. Eurasian J. Phys. Funct. Mater, 2020, Vol.4, No. 3, pp. 261-267. doi: 10.29317/ejpfm.2020040309 DOI: https://doi.org/10.29317/ejpfm.2020040309

Seth M., Morton D., Silverstein W., Jensen L. Theoretical studies of plasmonics using electronic structure methods. Chem. Rev., 2011, Vol. 111, pp. 3962–3994. doi: dx.doi.org/10.1021/cr100265f DOI: https://doi.org/10.1021/cr100265f

Kucherenko M.G., Kislov D.A. Plasmon-activated intermolecular nonradiative energy transfer in spherical nanoreactors. J. Photochem. Photobiol. A, 2018, Vol. 354, pp. 25–32. doi:10.1016/j.jphotochem.2017.10.020 DOI: https://doi.org/10.1016/j.jphotochem.2017.10.020

Kucherenko M.G., Nalbandyan V.M. Аbsorption and spontaneous emission of light by molecules near metal nanoparticles in external magnetic field. Phys. Procedia, 2015, Vol. 73, pp. 136–142. doi:10.1016j.phpro.2015.09.134 DOI: https://doi.org/10.1016/j.phpro.2015.09.134

Kulinich A.V., Derevyanko N.A., Ishchenko A.A. Synthesis and spectral properties of malononitrile_based merocyanine dyes. Russ. Chem. Bull, 2005, Vol. 54, No.12, pp. 2820–2830. doi:10.1134/S1070363212040172 DOI: https://doi.org/10.1007/s11172-006-0196-0

Becker W. The bh TCSPC Handbook, Sixth Edition, Becker&Hickl, GmbH, 2014, 466 p.

Anger P., Bharadwaj P., Novotny L. Enhancement and quenching of single molecule fluorescence. Phys. Rev. Lett, 2006, Vol. 96, pp. 113002–113006. doi:10.1103/PhysRevLett.96.113002 DOI: https://doi.org/10.1103/PhysRevLett.96.113002

Seliverstova E., Ibrayev N., Omarova G., Ishchenko A., Kucherenko M. Competitive influence of the plasmon effect and energy transfer between chromophores and Ag nanoparticles on the fluorescent properties of indopolycarbocyanine dyes. J. Lumin, 2021, Vol. 235, pp. 118000. doi:10.1016/j.jlumin.2021.118000 DOI: https://doi.org/10.1016/j.jlumin.2021.118000

Novotny L., Hecht B. Principles of Nano-Optics, Cambridge University Press, NY, 2006. DOI: https://doi.org/10.1017/CBO9780511813535

Загрузки

Опубликована онлайн

2023-07-10

Как цитировать

Сәулебеков, А., Қамбарова, Ж., & Омарова, Г. (2023). Малогабаритный высокочувствительный электронный спектрометр для анализа состава корпускулярных потоков . Eurasian Physical Technical Journal, 20(2(44), 112–117. https://doi.org/10.31489/2023No2/112-117

Выпуск

Раздел

Физика и астрономия

Похожие статьи

1 2 3 4 5 6 7 > >> 

Вы также можете начать расширеннвй поиск похожих статей для этой статьи.

Наиболее читаемые статьи этого автора (авторов)

Loading...