FLUCTUATION-DISSIPATION CORRELATION OF THE SIGNAL OF STARS OF THE FS CMA TYPE

FLUCTUATION-DISSIPATION CORRELATION OF THE SIGNAL OF STARS OF THE FS CMA TYPE

Authors

DOI:

https://doi.org/10.31489/2025N4/117-122

Keywords:

Fluctuation-dissipation analysis, FS CMa-type stars, binary stars, photon dissipation

Abstract

Due to the importance of stellar evolution, new theories and approaches to the study of stars are constantly being developed. This study presents novel results obtained through the application of the fluctuation-dissipation theorem. According to this theorem, fluctuations within a system give rise to dissipation in the form of thermal equilibrium. The spectral correlation function of fluctuations is related to the degree of photon dissipation. In this work, the evolutionary stage of stars is determined by analyzing the relationship between dissipation and fluctuation in complex FS CMa-type systems.

References

Kippenhahn R., Weigert A., Weiss A. (2012) Stellar Structure and Evolution. Springer. https://doi.org/10.1007/978-3-642-30304-3 DOI: https://doi.org/10.1007/978-3-642-30304-3

Miroshnichenko A.S., et al. (2007) A new group of B[e] stars: unclassified FS CMa type objects. The Astrophysical Journal, 671(2), 828. https://doi.org/10.1086/523036 DOI: https://doi.org/10.1086/523036

de la Fuente D., Najarro F., Trombley C., Davies B., Figer D.F. (2015) First detections of FS Canis Majoris stars in clusters. A&A, 575, A10. https://doi.org/10.1051/0004-6361/201425371 DOI: https://doi.org/10.1051/0004-6361/201425371

Miroshnichenko A.S.; Zharikov S.V.; Korčaková D., Manset N., Mennickent R., Khokhlov S.A., Danford S., Raj A., Zakhozhay O.V. (2020) Binarity among objects with the Be and B[e] phenomena. Contributions of the Astronomical Observatory Skalnaté Pleso, 50 (2), 513-517. https://doi.org/10.31577/caosp.2020.50.2.513 DOI: https://doi.org/10.31577/caosp.2020.50.2.513

Salaris M., Cassisi S. (2005) Evolution of Stars and Stellar Populations. Wiley https://doi.org/10.1002/0470033452 DOI: https://doi.org/10.1002/0470033452

Aerts C., Christensen-Dalsgaard J., Kurtz D.W. (2010). Asteroseismology. Springer. https://doi.org/10.1007/ 978-1-4020-5803-5 DOI: https://doi.org/10.1007/978-1-4020-5803-5

Paxton B., et al. (2011) Modules for Experiments in Stellar Astrophysics (MESA). Astrophysical Journal Supplement Series, 192(1), 3. https://doi.org/10.1088/0067-0049/192/1/3 DOI: https://doi.org/10.1088/0067-0049/192/1/3

Gray D.F. (2005). The Observation and Analysis of Stellar Photospheres. Cambridge University Press. https://doi.org/10.1017/CBO9781316036570 DOI: https://doi.org/10.1017/CBO9781316036570

Wei Wu, Jin Wang. (2020) Generalized Fluctuation-Dissipation Theorem for Non-equilibrium Spatially Extended Systems. Frontiers in Physics, 8, id.567523, 18. https://doi.org/10.3389/fphy.2020.567523 DOI: https://doi.org/10.3389/fphy.2020.567523

Seifert U., Speck T. (2010) Fluctuation-dissipation theorem in nonequilibrium steady states. EPL Europhysics Letters, 89, 10007. https://doi.org/10.1209/0295-5075/89/10007 DOI: https://doi.org/10.1209/0295-5075/89/10007

Sarracino A., Vulpiani A. (2019) On the fluctuation-dissipation relation in non-equilibrium and non-Hamiltonian systems. Chaos Interdiscip. J. Nonlinear Sci., 29, 083132. https://doi.org/10.1063/1.5110262 DOI: https://doi.org/10.1063/1.5110262

Kubo R. (2019) Fluctuation-dissipation theorem revisited. Prog. Theor. Exp. Phys., 12, 123I01. https://doi.org/10.1166/rits.2014.1023

Caprini L., Puglisi A., Sarracino A. (2021) Fluctuation–Dissipation Relations in Active Matter Systems. Symmetry, 13(1), 81. https://doi.org/10.3390/sym13010081 DOI: https://doi.org/10.3390/sym13010081

Coghi F., Buffoni L., Gherardini S. (2023) Convergence of the integral fluctuation theorem estimator for nonequilibrium Markov systems. Journal of Statistical Mechanics: Theory and Experiment, 063201. https://doi.org/10.1088/1742-5468/acc4b2 DOI: https://doi.org/10.1088/1742-5468/acc4b2

Zhanabaev Z.Zh., Ussipov N.M. (2023) Information-entropy method for detecting gravitational wave signals. Eurasian Physical Technical Journal, 20, 2 (44), 79-86. https://doi.org/10.31489/2023NO2/79-86 DOI: https://doi.org/10.31489/2023NO2/79-86

Zhanabaev Z.Zh., Ussipov N.M. (2019) Scale – invariance of many galaxies. Recent Contributions to Physics 2(69), 27-32. https://doi.org/10.26577/rcph-2019-i2-4 (In Kaz.). DOI: https://doi.org/10.26577/RCPh-2019-i2-4

Zhanabaev Z.Zh., Grevtseva T.Yu. (2014) Physical fractal phenomena in nanostructured semiconductors. Reviews in Theoretical Science, 2(3), 211-259. https://doi.org/10.1166/rits.2014.1023 DOI: https://doi.org/10.1166/rits.2014.1023

Hurley J.R., Tout C.A., Pols O.R. (2002) Evolution of binary stars and the effect of tides on binary populations. Monthly Notices of the Royal Astronomical Society, 329(4), 897-928. https://doi.org/10.1046/j.1365-8711.2002.05038.x DOI: https://doi.org/10.1046/j.1365-8711.2002.05038.x

Downloads

Published online

2025-12-29

How to Cite

Zhanabaev, Z., Imanbayeva, A., Akniyazova, A., & Ashimov, Y. (2025). FLUCTUATION-DISSIPATION CORRELATION OF THE SIGNAL OF STARS OF THE FS CMA TYPE. Eurasian Physical Technical Journal, 22(4 (54), 117–122. https://doi.org/10.31489/2025N4/117-122

Issue

Section

Physics and Astronomy

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...