SATURATION OF GAS CONCENTRATION SIGNAL OF THE LASER GAS SENSOR
DOI:
https://doi.org/10.31489/2024No3/71-80Keywords:
fluctuation-dissipation, correlator, photodiode, methane, carbon tetrachloride, ammoniaAbstract
Nowadays it is possible to determine the type of gas with sufficient accuracy when its concentration is less than fractions using spectroscopic methods (optical, radio engineering, acoustic). Along with this, the value of permissible concentrations of explosive, toxic, harmful to technology and ecology gases is practically important. Known physical experimental studies indicate only a linear dependence of the response of a laser gas sensor at units . The research methods for units are based on the processes of combustion, micro-explosion, structural and phase transformations and are not always applicable in real practical conditions. The work is devoted to the analysis of experimentally obtained fluctuations caused by a laser beam in a gas in a photodiode (signal receiver) due to its influence not only at the atomic level, but also on the scale of clusters of nanoparticle molecules. The gas concentration is estimated by the fluctuation-dissipation ratio. It is shown that the signal correlator is saturated to a constant value when the quantum (laser photon energy) and thermal (nanoparticle temperature) factors are comparable with an increase in the concentration of the target gas. The critical values of the saturation concentration are determined by the equality of these two factors.
References
Gong W., Hu J., Wang Z., Wei Y., Li Y., Zhang T., Zhang Q., Liu T., Ning Y., Zhang W., Grattan T. V. (2022) Recent advances in laser gas sensors for applications to safety monitoring in intelligent coal mines. Frontiers in Physics, 10, 1058475. DOI:10.3389/fphy.2022.1058475. DOI: https://doi.org/10.3389/fphy.2022.1058475
Shin W., Hong S., Jeong Y., Jung G., Park J., Kim D., Choi K., Shin H., Koo R.H., Kim J.J., Lee J.H. (2023) Low-frequency noise in gas sensors: A review. Sensors and Actuators B: Chemical, 383, 133551. DOI:10.1016/j.snb.2023.133551. DOI: https://doi.org/10.1016/j.snb.2023.133551
Liu K., Wang L., Tan T., Guishi W., Zhang W., Chen W., Gao X. (2015) Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell. Sensors and Actuators B: Chemical, 220, 1000 – 1005. DOI: 10.1016/j.snb.2015.05.136. DOI: https://doi.org/10.1016/j.snb.2015.05.136
Yu H.-L, Wang J., Zheng B, Zhang B.-W., Liu L.-Q., Zhou Y.-W., Zhang Ch., Xue, X.-L. (2020) Fabrication of single crystalline WO 3 nano-belts based photoelectric gas sensor for detection of high concentration ethanol gas at room temperature. Sensors and Actuators A: Physical, 303, 111865. DOI: 10.1016/j.sna.2020.111865. DOI: https://doi.org/10.1016/j.sna.2020.111865
Qiao Y., Arabi M., Xu W., Zhang H., Abdel-Rahman T.M. (2021) The impact of thermal-noise on bifurcation MEMS sensors. Mechanical Systems and Signal Processing, 161, DOI: 10.1016/j.ymssp.2021.107941. DOI: https://doi.org/10.1016/j.ymssp.2021.107941
Mehay T.P., Warmbier R., Quandt A. (2017) Investigation of density fluctuations in graphene using the fluctuation-dissipation relations. Computational Condensed Matter, 13, 1-5. DOI: 10.1016/j.cocom. 2017.08.008. DOI: https://doi.org/10.1016/j.cocom.2017.08.008
Hsiang J.T., Hu B.L., Lin S.Y., Yamamoto K. (2019) Fluctuation-dissipation and correlation-propagation relations in (1 + 3)D moving detector-quantum field systems. Physics Letters B, 795, 694-699, DOI:10.1016/j.physletb.2019.06.062. DOI: https://doi.org/10.1016/j.physletb.2019.06.062
Moskalensky A.E., Yurkin M.A. (2021) A point electric dipole: From basic optical properties to the fluctuation–dissipation theorem. Reviews in Physics, 6. DOI: 10.1016/j.revip.2020.100047. DOI: https://doi.org/10.1016/j.revip.2020.100047
Bunker P.R., Jensen P. (2005) Symmetry and Broken Symmetry in Molecules. Encyclopedia of Life Support Systems (EOLSS), Eolss Publishers, Oxford http://www.eolss.net/Sample-Chapters/C06/E6-12A-02-06.pdf]
Pippard A.B. (1989) The Physics of Vibration. Cambridge University Press. ISBN 10: 0521372003 DOI: https://doi.org/10.1017/CBO9780511622908
Zhanabaev Z.Z., Grevtseva T.Y. (2014) Physical fractal phenomena in nanostructured semiconductors. Reviews in Theoretical Science, 2, 211 – 259. DOI: 10.1166/rits.2014.1023. DOI: https://doi.org/10.1166/rits.2014.1023
Schuster H.G. and Just W. (2005) Deterministic Chaos: An Introduction. Wiley-VCH Verlag GmbH & Co.4. https://doi.org/10.1002/3527604804 DOI: https://doi.org/10.1002/3527604804
Chitarra O., Martin-Drumel M.A., Buchanan Z., Pirali O. (2021) Rotational and vibrational spectroscopy of 1-cyanoadamantane and 1-isocyanoadamantane. Journal of Molecular Spectroscopy, 378, 111468, DOI:10.1016/ j.jms.2021.111468. DOI: https://doi.org/10.1016/j.jms.2021.111468
Adamu A.I., Dasa M.K., Bang O., Markos C. (2020) Multispecies Continuous Gas Detection With Supercontinuum Laser at Telecommunication Wavelength. IEEE Sensors Journal, 20(18), 10591-10597, DOI:10.1109/JSEN.2020.2993549. DOI: https://doi.org/10.1109/JSEN.2020.2993549
Wang K., Zhang Z., Wu Zh., Wang Sh., Guohua L., Shao J., Wu H., Tao M., Ye J. (2024) Diagnosis of multiple gases using a multi-pass ring cavity to enhance Raman scattering. Optics Communications, 559, 130438. doi:10.1016/j.optcom.2024.130438. DOI: https://doi.org/10.1016/j.optcom.2024.130438
Downloads
Received
Revised
Accepted
Published online
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.












