INVESTIGATION OF OPTICAL AND ELECTRICAL PROPERTIES OF TITANIUM OXYNITRIDE FILMS

INVESTIGATION OF OPTICAL AND ELECTRICAL PROPERTIES OF TITANIUM OXYNITRIDE FILMS

Authors

DOI:

https://doi.org/10.31489/2025N4/24-30

Keywords:

Titanium oxynitride, thin films, magnetron sputtering, absorption spectrum, electrical resistivity

Abstract

In this work, titanium oxynitride films were obtained on the surface of glass and silicon substrates by magnetron sputtering in a mixture of argon-oxygen-nitrogen gases. The thickness of the obtained films, their deposition rate, and surface morphology were estimated depending on the type of substrate. The optical and electrical properties of films produced on the glass surface have been studied. A comparison of optical data with literature data showed the formation of amorphous films with a composition close to the stoichiometric composition of TiO1.27N0.49. The results showed that the obtained properties correspond to the literature data, which opens up new prospects for the use of the obtained titanium oxynitride films as an active element of memristors, and in other important areas of modern materials science.

References

Song M.-K., Kang J.-H., Zhang X., Ji W., Ascoli A., Messaris I., Demirkol A.S., Dong B., Aggarwal S., Wan W., Hong S.-M., Cardwell S.G., Boybat I., Seo J.-S., Lee J.-S., Lanza M., Yeon H., Onen M., Li J., Yildiz B., del Alamo J.A., Kim S., Choi S., Milano G., Ricciardi C., Alff L., Chai Y., Wang Z., Bhaskaran H., Hersam M.C., Strukov D., Wong H.-S.P., Valov I., Gao B., Wu H., Tetzlaff R., Sebastian A., Lu W., Chua L., Yang J.J., Kim J. (2023) Recent advances and future prospects for memristive materials, devices, and systems. ACS Nano, 17(13), 11994–12039. https://doi.org/10.1021/acsnano.3c03505 DOI: https://doi.org/10.1021/acsnano.3c03505

Xu W., Wang J., Yan X. (2021) Advances in memristor-based neural networks. Front. Nanotech., 3, 645995(1–14). https://doi.org/10.3389/fnano.2021.645995 DOI: https://doi.org/10.3389/fnano.2021.645995

Aguirre F., Sebastian A., Le Gallo M. (2024) Hardware implementation of memristor-based artificial neural networks. Nature Commun., 15(1), 1974. https://doi.org/10.1038/s41467-024-45670-9 DOI: https://doi.org/10.1038/s41467-024-45670-9

Strukov D.B., Snider G.S., Stewart D.R., Williams R.S. (2008) The missing memristor found. Nature, 453, 80–83. https://doi.org/10.1038/nature06932 DOI: https://doi.org/10.1038/nature06932

Zimmers A., Aigouy L., Mortier M., Sharoni A., Wang S., West K.G., Ramirez J.G., Schuller I.K. (2013) Role of thermal heating on the voltage induced insulator-metal transition in VO2. Phys. Rev. Lett., 110, 056601. https://doi.org/10.1103/PhysRevLett.110.056601 DOI: https://doi.org/10.1103/PhysRevLett.110.056601

Zhang H., Liu L.F., Gao B., Qiu Y.J., Liu X.Y., Lu J., Han R.Q., Kang J.F., Yu B. (2011) Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach. Appl. Phys. Lett., 98(4), 042105. https://doi.org/10.1063/1.3543837 DOI: https://doi.org/10.1063/1.3543837

Kim S., Choi Sh.H., Lu W. (2013) Comprehensive physical model of dynamic resistive switching in an oxide memristor. ACS Nano, 8(3), 2369–2376. https://doi.org/10.1021/nn405827t DOI: https://doi.org/10.1021/nn405827t

Ryndin E., Andreeva N., Luchinin V. (2022) Compact model for bipolar and multilevel resistive switching in metal-oxide memristors. Micromachines, 13(1), 98. https://doi.org/10.3390/mi13010098 DOI: https://doi.org/10.3390/mi13010098

Ju D., Kim S. (2024) Volatile tin oxide memristor for neuromorphic computing. iScience, 27(8), 110479(1–13). https://doi.org/10.1016/j.isci.2024.110479 DOI: https://doi.org/10.1016/j.isci.2024.110479

Zhu Y.-L., Xue K.-H., Cheng X.-M., Qiao Ch., Yuan J.-H., Li L.-H., Miao X.-Sh. (2021) Uniform and robust TiN/HfO2/Pt memristor through interfacial Al-doping engineering. Appl. Surf. Sci., 550, 149274. https://doi.org/10.1016/j.apsusc.2021.149274 DOI: https://doi.org/10.1016/j.apsusc.2021.149274

Shih Y.-Ch., Wang T.-H., Huang J.-Sh. (2016) Roles of oxygen and nitrogen in control of nonlinear resistive behaviors via filamentary and homogeneous switching in an oxynitride thin film memristor. RSC Adv., 6(66), 61221–61227. https://doi.org/10.1039/c6ra12408a DOI: https://doi.org/10.1039/C6RA12408A

Urazbekov A.E., Troyan P.E., Sakharov Yu.V. (2024) Development of a method for obtaining copper-doped titanium dioxide for the creation of memristive memory elements. Polzunov Bull., 1, 229–233. https://doi.org/10.25712/ASTU.2072-8921.2024.01.029 DOI: https://doi.org/10.25712/ASTU.2072-8921.2024.01.029

Leng Y.X., Wang Z.H., Huang N. (2011) Structure and Properties of Ti-O-N Films Synthesized by Reactive Magnetic Sputtering. Physics Procedia, 18, 40–45. https://doi.org/10.1016/j.phpro.2011.06.054 DOI: https://doi.org/10.1016/j.phpro.2011.06.054

Mucha N.R., Som J., Shaji S., Fialkova S., Apte P.R., Balasubramanian B., Shield J.E., Anderson M., Kumar D. (2020) Electrical and optical properties of titanium oxynitride thin films. J. Mater. Sci., 55(12), 5123–5134. https://doi.org/10.1007/s10853-019-04278-x DOI: https://doi.org/10.1007/s10853-019-04278-x

Naik G.V., Kim J., Boltasseva A. (2011) Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express, 1(6), 1090–1099. https://doi.org/10.1364/OME.1.001090 DOI: https://doi.org/10.1364/OME.1.001090

Ali Sh., Magnusson R., Pshyk O., Birch J., Eklund P., le Febvrier A. (2023) Effect of O/N content on the phase, morphology, and optical properties of titanium oxynitride thin films. J. Mater. Sci., 58, 10975–10985. https://doi.org/10.1007/s10853-023-08717-8 DOI: https://doi.org/10.1007/s10853-023-08717-8

Jia L.W., Lu H.P., Ran Y.J., Zhao S.J., Liu H.N., Li Y.L., Jiang Z.T., Wang Z. (2019) Structural and dielectric properties of ion beam deposited titanium oxynitride thin films. J. Mater. Sci., 54, 1452–1461. https://doi.org/10.1007/s10853-018-2923-y DOI: https://doi.org/10.1007/s10853-018-2923-y

Fabreguette F., Imhoff L., Maglione M., Domenichini B., Marco de Lucas M.C., Sibillot P., Bourgeois S., Sacilotti M. (2010) Correlation between the electrical properties and morphology of low-pressure MOCVD titanium oxynitride thin films grown at various temperatures. Chem. Vap. Deposition, 6(3), 109–114. https://doi.org/10.1002/(SICI)1521-3862(200006)6:3%3C109::AID-CVDE109%3E3.0.CO;2-4 DOI: https://doi.org/10.1002/(SICI)1521-3862(200006)6:3<109::AID-CVDE109>3.0.CO;2-4

Guchenko S.A. (2012) Production, structure, and properties of multiphase ion-plasma coatings. Bull. Karaganda Univ. Ser.: Phys., 4(68), 12–25. Available at: https://phs.buketov.edu.kz/apart/srch/2012_physics_4_68_2012.pdf

Baikenov M.I., Seldyugaev O.B., Guchenko S.A., Afanasyev D.A. (2024) Reason of pitting corrosion of martensitic steel in sea water. Euras. Phys. Tech. J., 21(1), 38–48. https://doi.org/10.31489/2024No1/38-48 DOI: https://doi.org/10.31489/2024No1/38-48

Kiseleva E.S. (2016) Physico-mechanical properties and structure of titanium dioxide and oxynitride films deposited by reactive magnetron sputtering. Abstract of diss., Tomsk. [in Russian] Available at: https://portal.tpu.ru/portal/pls/portal/!app_ds.ds_anketa_bknd.download_doc?fileid=3437

Dultsev F.N., Svitasheva S.N., Nastaushev Yu.V., Aseev A.L. (2011) Ellipsometric investigation of the mechanism of the formation of titanium oxynitride nanolayers. Thin Solid Films, 519(19), 6344–6348. https://doi.org/10.1016/j.tsf.2011.04.034 DOI: https://doi.org/10.1016/j.tsf.2011.04.034

Mergel D., Buschendorf D., Eggert S., Grammes R., Samset B. (2000) Density and refractive index of TiO2 films prepared by reactive evaporation. Thin Solid Films, 371(1–2), 218–224. https://doi.org/10.1016/S0040-6090(00)01015-4 DOI: https://doi.org/10.1016/S0040-6090(00)01015-4

El-Hossary F.M., Negm N.Z., Abd El-Rahman A.M., Raaif M., Abd Elmula A.A. (2015) Properties of titanium oxynitride prepared by RF plasma. Advances in Chemical Engineering and Science, 5, 1–14. http://dx.doi.org/10.4236/aces.2015.51001 DOI: https://doi.org/10.4236/aces.2015.51001

Pavlov L.P. (1987) Methods for measuring parameters of semiconductor materials. Moscow: Vysshaya Shkola. 239 p. [in Russian] Available at: https://www.studmed.ru/pavlov-lp-metody-izmereniya-parametrov-poluprovodnikovyh-materialov_2b8fe54b8df.html

Yang X.G., Li C., Yang B.J., Wang W., Qian Y.T. (2004) Optical properties of titanium oxynitride nanocrystals synthesized via a thermal liquid-solid metathesis reaction. Chem. Phys. Lett., 383(5–6), 502–506. https://doi.org/10.1016/j.cplett.2003.11.037 DOI: https://doi.org/10.1016/j.cplett.2003.11.037

Ievlev V.M., Kushchev S.B., Latyshev A.N., Leonova L.Yu., Ovchinnikov O.V., Smirnov M.S., Popova E.V., Kostyuchenko A.V., Soldatenko S.A. (2014) Absorption spectra of TiO2 thin films synthesized by the reactive radio-frequency magnetron sputtering of titanium. Semiconductors, 48(7), 848–858. https://doi.org/10.1134/S1063782614070094 DOI: https://doi.org/10.1134/S1063782614070094

Erofeev E.V., Fedin I.V., Kazimirov A.I. (2015) Study of electrophysical parameters of titanium nitride thin films obtained by magnetron sputtering. Bull. SibSUTIS, 3, 29–34. Available at: https://vestnik.sibsutis.ru/jour/article/view/506

Chris-Okoro I., Cherono Sh., Akande W., Nalawade S. (2025) Optical and plasmonic properties of high-electron-density epitaxial and oxidative controlled titanium nitride thin films. J. Phys. Chem. C, 129(7), 3762–3774. https://doi.org/10.1021/acs.jpcc.4c06969 DOI: https://doi.org/10.1021/acs.jpcc.4c06969

Yildiz A., Lisesivdin S.B., Kasap M., Mardare D. (2008) Electrical properties of TiO2 thin films. J. Non-Cryst. Solids, 354, 4944–4947. https://doi.org/10.1016/j.jnoncrysol.2008.07.009 DOI: https://doi.org/10.1016/j.jnoncrysol.2008.07.009

Downloads

Published online

2025-12-29

How to Cite

Makhabayeva, A., Chirkova, L., Guchenko, S., Tuleuov, S., Makhanov, K., Shakirzyanov, R., & Afanasyev, D. (2025). INVESTIGATION OF OPTICAL AND ELECTRICAL PROPERTIES OF TITANIUM OXYNITRIDE FILMS. Eurasian Physical Technical Journal, 22(4 (54), 24–30. https://doi.org/10.31489/2025N4/24-30

Issue

Section

Materials science

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

Loading...